历史

第十七章 振荡和处理单元(1/2)

    “预言是一件困难的事情,特别是如果它涉及未来的话。”

    到此为止我很少谈及可能解决捆绑问题的方法。一个物体(或事件)的不同特征在脑中对应于不同的神经元发放。捆绑问题即如何将这些神经元捆绑在一起。如果在一个感知时刻察觉到不止一个物体,这个问题就显得尤为突出。捆绑的重要性在于它可能至少对某些类型的觉知是必需的。在第十四章曾提到捆绑可能通过有关的神经元的相关发放来实现。一种非常简单的相关发放形式是所有牵涉到的神经元同时以一种节律形式发放(虽然节律对相关而言并非本质)。图57是一个理想化的例子,它显示了神经元每100毫秒有一簇发放,频率约为10赫兹。频率在此附近的节律称为“α节律”。在从头皮记录到的脑波(即脑电波图,EEG)是相当杂乱无章的信号,从中可以探测到这种节律以及其他节律。是否有实验证据表明由神经元组成的群体中存在相关发放呢?

    一段时期以来人们已经知道,嗅觉系统中出现了具有振荡形式的相关发放,但直到最近才在视觉皮层中清楚地观察到这种振荡。最令人振奋的结果来自德国的两个研究小组。法兰克福的沃尔夫·辛格(Wolf

    Singer)、查尔斯·格雷(Charles Gray)和同事们在猫的视皮层观察到了振荡现象。这些振荡在35至75赫兹范围内,常称作“γ振荡”,或不那么精确地称作“40赫兹振荡”。马尔堡的莱因哈德·艾克霍恩(Reinhard

    Eckhom)和他的同事们独立地观察到了这种振荡。他们使用了一种用于探测“场电位”的电极,能够特别清楚地观察到这种现象。大致说来,场电位所显示的是电极附近的一群神经元的持续变化着的平均活动,它很像是在鸡尾酒会上在一大群人中听到的叽叽喳喳的谈话声。

    这些实验比较新,而更新的实验结果仍不断出现,在这里,我仅给出一个非常简单的描述。

    正如前面已经叙述过的,当视野内出现适当的刺激时,视皮层的一些神经元会变得活跃起来,并以一定的节律形式发放。在它们附近的平均的局部电活动(场电位)常表现为在40赫兹范围内的振荡。这种神经元发出的脉冲并不随机出现,而是和局域的振荡“合拍的”(见图60)。一个神经元会合拍地发放由两、三个脉冲形成的短簇,有时它也可能根本不发放;但当它发放时,经常是与它的一些神经元“同伴”近似同步的。这些振荡并不很规则。它们的波形更像一个随手画出的粗糙的波,而不像具有恒定频率的非常规则的数学上的波。

    辛格和同事们经常发现,当使用两个离得不太远的电极作记录时,如果其中一个电极附近的神经元发放,它们趋向于与另一个电极附近的神经元的发放同步,甚至当两个电极分隔达7毫米远,场电位还可能具有同位相振荡。不过这种情况更多出现在使它们兴奋的运动刺激是属于同一个物体而不是两个物体的时候。只是目前支持最后一个陈述的实验证据还相当少。另外有实验表明,运动光棒能在第一视区和第二视区的相应位置引起同位相的节律发放,这正说明同步可以出现在不同皮层区域的神经元之间。此外也有实验表明同步可以出现在大脑两半球皮层之间。

    德国的这两个研究小组都认为,这些40

    赫兹振荡可能是脑对捆绑问题的解答。他们提出,标志同一个物体所有不同属性(形状、颜色、运动等)的神经元通过同步发放将这些属性捆绑到一起。科赫和我将这一观点更推广了一步,认为这种与y振荡(在35至75赫兹范围内)合拍(或在此附近)的同步发放可能是视觉觉知的神经关联。这种行为将是其他理论家提出的相关发放的一个特殊情况。

    我们还认为,注意机制的主要功能可能是选择一个被注意的物体,然后帮助把所有神经元同步结合起来,这些神经元对应于脑对这部分视觉输入的最佳解释。我们猜测,丘脑是“注意的器官”,它的某些部分控制注意的“探照灯”在视野中从一个显著目标跳向另一个。

    这些开创性的实验是猫被轻度麻醉时进行的,在猫被非常深度地麻醉(使用巴比妥盐)的情况下没有观察到振荡,但此时神经元的活动性无论怎样都极度降低了,因而这一结果本身并未提供很多信息。最近的实验是在清醒的猫上进行的(查尔斯·格雷在同我的私人通信中提到此事)。这里也存在

    40

    赫兹的振荡,因而振荡并不是麻醉引起的伪迹。一些新的实验使用了轻度麻醉的猴,在皮层第六区的也发现了振荡。在清醒的猴子皮层MT区的实验表明,使用运动棒作为视觉输入时能观察到振荡,而当呈现伪随机运动的点组成的图案时则不然。目前尚不能解释这种行为上的差异。这更像是振荡参与了图形/背景的鉴别,而不是视觉觉知。艾伯哈德·菲尔兹(Eberhard

    Fetz)和同事们在清醒的猴子的运动/躯体感觉皮层的实验中也清楚地观察到了振荡,特别是当猴子完成一项需要注意的复杂的操作任务的时候。

    观察到的振荡通常是相当短暂的。它们持续的时间常常依赖于所用的视觉信号呈现的长短。正如一些理论预测的那样,不同位置的神经元集团间的相关振荡仅持续几百毫秒。总的来说,很难让人们相信外部世界在我们的脑中留下的生动逼真的景象完全依赖于如此杂乱、难以观察到的神经活动。

    现在你或许会感到迷惑,就像警察在侦破一个困难的谋杀案的初期一样。这里线索很多,但没有哪个能令人信服地指出这个谜团的可能的解答。这就是公众最难以体会的那一类警察工作——沿着众多相当弱的线索进行系统的、费力的追踪。对于视觉觉知方面的科学探索也是如此,我们都想知道答案,但若不仔细地检查不同的“痕迹”,我们就不可能找到答案。可能有许多线索最终被证明是误导甚至完全是错误的。

    从所有这些考虑当中我们可以知道,视觉觉知可能有若干种形式;推而广之,一般说来意识甚至可能有更多种形式。我们能否找到某种方法把视觉觉知的这些不同形式同灵长类动物视觉系统的结构和行为联系起来呢?

    回想一下我所描述的视觉处理有三个可能阶段:一个阶段非常短暂,大致对应于马尔的要素图;一个则更为持久和生动,大致相应于他的2.5维图和杰肯道夫的中间层次;还有一个三维的以物体为中心的过程,它并不对应于我们所真实看到的东西,而是对我们所看到的物体的某些推测。我生动地看到一个特定物体的轮廓和可视表面,这些表明它是茶杯,并具有所推断出的三维形状。通常看这个词包括这么两种用法。如果我说“你看见那边的那个杯子了吗?”,我在两种意义上使用了看这个词。我可能仅仅是指杯子呈现在我面前的可视表面,但也可能指所推断的整个杯子的三维形状。注意2.5维图和3维模型是一类问题的两种推断,即它们都具有对这个视觉输入的解释,并且都可能是错的。我们对单词的日常用法可能并不精确地描述脑的真实行为。

    有一种观点认为视觉处理的每个层次都有某个丘脑区域与之对应,(1)我称之为处理假设。从同一个丘脑核团接受输入的皮层区之间有何共同之处?这个关键问题人们很少提及。

    我们都知道在灵长类视觉系统中侧膝体(丘脑的一部分)主要与V1

    区有关联。灵长类丘脑有一个很大的部分称为“丘脑后节结”,丘脑的其他视觉区都位于这里(见第十五章)。它具有大量不同的亚区,其中一些亚区可能由若干更小的小区域构成。是否每一个区域都与视觉处理的某一个阶段相关呢?这有两种可能性。这些亚区(其中三个是主要的,即前部、侧部和中部丘脑后节结)可能各与戴维·马尔理论中的一个阶段(即要素图、2.

    5维图和三维模型)或某些类似的东西有较强的关联。另有一种可能,即更小的、数目更多的小亚区各与范·埃森的视觉等级(图52)的一个层次有强相关。当然,这两种可能性都具有一定真实的成分。

    我所说的“强相关”是什么意思呢?丘脑向皮层发出的连接有两种形式:一种连接到第4层(或第3层);另一种则避开了这些中间层,通常有很多向第1

    层的投射。第一种类型连接可能是驱动性的,而第二种则更像是对已经发生的事件进行调节。我指的强相关是那些到中间层的驱动性连接。在这个简短的考虑中我暂时搁下另一种类型。

    最简单他说,处理假设就是任何一个皮层区域仅仅与丘脑的某一部分密切相关。这种观点并非完全不可置信。皮层Vl区只与侧膝体密切相关,而与丘脑其他部分没有关系。人们发现,形成马尔的要素图(或某些类似的东西)的特征确实在V1

    区出现。在那里标识的信息对应于相当简单的局部特征,如视野中一小部分图像的朝向。科赫和我设想Vl区可能是十分短暂形式的视觉觉知的所在地。我们认为这并不需要注意机制。实验表明,猴子的注意并不影响Vl区神经元的发放,这可以认为是对此种提法的支持。

    我们对其他部分的丘脑连接的细节尚不够了解,不能判断处理假设是否正确。除了v1区以外,每个皮层区域是否仅仅与丘脑后节结的一个部分有强的连接呢?如若不然,它们又怎样连接呢?要回答这个问题还需要更多的实验。也有可能一些丘脑区域恰好与参与视觉觉知的皮层区有强的连接。

    那么假设的三维模型阶段又怎样呢?这种情况我们几乎不知从何下手,心理学家欧文·比德曼(Irving

    Biedrman) 认为这种表象将基于他称为“几何子(1)”的某些原始的三维形状。一些理论家(如托马索·波吉奥)则认为我们脑中所具有的是一个物体的一系列二维视图,以及在它们之间进行内插的能力。这两种观点很可能都是对的。如果所有这些确实存在的话,它们在猴子脑中究竟发生于何处尚有待确定。由于缺乏这些知识,要评价处理假设是困难的,许多乍看起来很美妙的假设常常由于实验的不确定性而停滞不前。

    不管