历史

第四章 混沌定律(2/2)

,y)变成(2x-1,(y+1)/2)。要得到逆面包师变换.我们只需将x和y互换。

    在面包师变换中,两个坐标扮演着不同的角色。水平坐标x是膨胀坐标,它对应于伯努利映射中的x,因为它每进行一次映射都乘以2(mod 1)。我们还有一个压缩坐标y,所以正方形的面积保持不变。当正方形被拉长成矩形时,在垂直坐标方向上的点更靠近在一起。由于每一次变换后沿水平坐标x两点间的距离加倍,所以在n次变换后,距离要乘以2n。我们把2n改写成enln2。若用变换次数n来衡量时间,则李雅普诺夫指数为ln2,恰如在第II节中考虑的伯努利映射。另外还有一个具有负值的李雅普诺夫指数-ln2,它对应于压缩方向y。

    面包师变换中的逐次迭代的效果,值得给予与我们在伯努利映射中所给予的同样程度的重视(参见图3.7)。这里,我们从位于正方形的一小部分中的诸点开始(见图4.2),我们在此可以清楚地看到正李雅普诺夫指数的拉伸效果。因坐标x和y受限于区间[0,1],这些点重新投射,在整个正方形得到均匀分布。我们还可以用数值模拟证明,若我们从概率ρn(x,y)出发,犹如伯努利推移的情形那样(见图3.8),则分布将很快趋于均匀。

    通过把面包师变换表示为伯努利推移,正如我们在第1节中所做的那样,我们可以加深对面包师变换机制的认识。

    为此,我们把单位正方形的每个点(x,y)与二进制表示所定义的双无穷数列{un}联系起来:

    其中,un可取值0或1。每个点 x,y由级数…u-2,u-1,u0,u1,u2…表示,其中,…u-2,u-1,u0 O对应于膨胀坐标x,而图形按照迭代次数(它代表时间)的顺序排列。(这些数值模拟是德里贝的工作。)u1,u2…对应于压缩坐标y。例如,点x=1/4、y=1/4将表示为u-1=1,u2=1,其他所有un都为0的一个级数。把这些表达式代入运动方程,我们得到推移公式un'=un-1,这又是一个伯努利推移。我们看到,包含在初始条件中的信息包括了该系统过去和未来的全部历史(见图4.3)。

    面包师变换的逐次迭代,使得阴影区和空白区碎裂,产生数目不断增加的不连通区域。注意,数字U0确定相空间代表点是处于单位正方形的左半部(u0 =0)还是右半部(u0=1)。数列 un,…可以通过掷硬币来确定,故 un的时间迭代 u'n=Un-1,u''n=un-2。将具有相同的随机性。这表明,点出现于正方形的左半部或右半部的过程可被视为伯努利推移。

    面包师变换也具有所有动力学系统都具有的一个重要性质,叫复现。考虑点(x,y),对于该点,序列{un}用二进制数表示,它无论是有限的还是无穷的,都是周期性的,故x和y都是有理数。既然所有的Un都以同样的方式推移,那么这一类型的所有状态在一定的时间周期之后都会同样地再循环。这对于大多数其他状态都同样成立。为了说明这一概念,我们考虑无理数点(X,y)的二进制表示,它包含无穷多的非平凡的、不重复的数字。可以证明,几乎所有的无理数都包含无穷个有限数列。因此,在位置0附近2m个数字的给定序列(它确定系统直至2-m误差的状态)将在推移效应的作用下无穷次地重新出现。既然m可以想取多大就取多大(虽然有限),那么这就意味着,几乎每一个状态都将无穷多次地任意趋近任何点(当然也包括初始位置)。换句话说,大部分轨道将经过整个相空间。这就是著名的庞加莱复现定理。长期以来,复现性连同可逆性被提出作为反对真正耗散过程的存在的重要论据。但现在这个观点不再得到支持了。

    总之,面包师变换是可逆的、时间可逆的、确定性的、复现的和混沌的。用这个例子说明这些特性特别有益,因为这同一些特性刻画了许多现实世界的动力学系统。我们将看到,尽管有这些特性,混沌允许我们通过在统计层次上进行描述来建立真正的不可逆性。

    保守系的动力学包含运动定律和初始条件。此处的运动定律虽然很简单,但有必要详细分析初始条件的概念。单个轨道的初始条件对应于无穷集{un}(n=-∞到+∞)。但是在现实世界中,我们只能通过有限的窗口进行观察。在目前的情形下,这意味着我们能够控制一个任意的但是有限的数列un。假定这个窗口对应于u-3u-2u-1u0.u1u2u3,其他所有的数字都是未知数字(圆点表示把x和y的数字分开)。伯努利推移Un'=un-1意味着,在下一步,前一个序列被u-4u-3u-2u-1·u0u1u2所代替,其中包含未知数字u-4。更准确地说,由于正李雅普诺夫指数的存在,我们需要以N+n位数字的精度知道该点的初始位置,以便在n次迭代后能够以N位数字的精度确定它的位置。

    我们在第一章看到,解决这一难题的传统手段是引入粗粒概率分布。这是埃伦费斯特夫妇最先提出的,这样的分布不能用单个点而是用区域进行定义。但是,扩张流形上的两个点,即使在时刻0由给定有限精度的测量是不可分辨的,但以后将随时间而分离,从而可观测。因此,传统的粗粒化不适用于动力学演化。这就是我们需要更精致方法的原因之一。

    但首先,我们应当详细分析用面包师变换趋于平衡的含义是什么。尽管像所有的动力学系统那样,面包师变换是可逆的,但对于 t→+∞和t→-∞的演化却是不同的。在t→+∞时,我们得到越来越多的水平窄条(见图  4. 3)。相反,在t→-∞时,我们得到越来越多的垂直窄条。

    我们看到,对于混沌映射,动力学导致两种类型的演化。所以,我们得到两个独立的描述,一个描述刻画在未来(t→+∞)趋向平衡,另一个描述刻画在过去( t→-∞)趋向平衡。我们在后面将看到,此种动力学分解对于混沌映射和不可积经典系统及量子系统是可能的。对于简单动力学系统,无论是谐振子还是二体系统,此种分解均不存在,因为未来和过去不可分辨。对于混沌映射,我们应当保留两个描述中的哪一个?我们将反复回到这一问题上来。眼下,我们考虑所有不可逆过程都具有的内在的普适性。大自然中一切时间之矢都有相同的指向。它们都在同一时间方向产生熵,这据定义就是未来。因此,我们必须保留对应于我们的未来(即对于t→+∞)达到平衡的描述。

    在第一章里,我们提到过与面包师映射相联系的时间佯谬:面包师映射描述的动力学是时间可逆的,但不可逆过程却在统计层次出现。像在伯努利映射中一样,我们可以引入由ρn+1(x,y)=Uρn(x,y)所定义的佩龙-弗罗贝尼乌斯算符U。但存在着根本性的差异。一个普遍定理指出,对于可逆动力学系统,存在着仅包含“正经函数”的在希尔伯特空间上定义的谱表示。而且,在这个谱表示中没有衰减,因为本征值为mod 1。这种谱表示对面包师变换也存在,但对我们没有什么意义,因为它不提供任何与轨道相关的新信息,我们只不过回到δ(x-xn+1)δ(y-yn+1)=Uδ(x-xn)δ(y-yn),一个等价于轨道描述的解。

    为了获得附加信息,如同我们对伯努利映射所做的,我们必须走出希尔伯特空间。就最近才得到的广义空间的谱表示而言,本征值与伯努利映射中的 1/2m相同。本征函数像伯努利映射中的 ~Bn(x)那样是奇异函数。这些表示再次是不可约的,它们仅适用于适当的检验函数,这迫使我们把我们自己眼于连续分布函数,用奇异δ函数表示描述的单轨道除外。像伯努利映射情形一样,个体描述与统计描述之间的等价性被打破了。统计描述只包含趋近于平衡,从而包含不可逆性。

    然而,与伯努利映射相比,面包师映射有一个重要的新特点:佩龙-弗罗贝尼乌斯方程既适用于未来,也适用于过去(ρn+1=Uρn和ρn-1=U-1ρn,这里 U-1是U的逆)。在希尔伯特空间谱表示的框架下,不论n1和n2的符号(正号指未来,负号指过去)是什么,均有  Un1+n2=Un1Un2,所以这没有什么差异。希尔伯特空间可以描述为一个动力学群。相反,对于不可约谱表示,未来和过去之间存在着根本性的差异,Un的本征值表达为(1/2m)n=e-n(mln2)。这个表达式对应于未来的衰减(n>0),以及过去的发散(n<0)。现在,存在着两种不同的谱表示,一个对应于未来,另一个对应于过去。包含于轨道描述(或希尔伯特空间)中的这两个时间方向现在被分开了。动力学群分成了两个半群。如上所述,根据我们所有不可逆过程都指向同一方向的观点,我们必须选择在我们自己的未来达到平衡的那个半群。自然本身由区分过去与未来的半群所描述,存在着一个时间之矢。结果,动力学与热力学之间的传统冲突被化解了。

    总之,只要我们考虑轨道,谈论混沌定律似乎就是矛盾的,因为我们处理混沌中负的方面,诸如导致不可计算性和表观无规性的轨道的指数发散。当我们引人在所有时间都有效且可计算的概率描述时,情况会发生戏剧性的变化。因此,对于混沌系统而言,动力学定律必须在概率层次上进行表述。在上面研究的简单例子中,不可逆过程仅与李雅普诺夫时间相联系,然而我们的研究已扩展到更一般的映射,它们包括诸如扩散过程和其他各种输运过程此类的不可逆现象。

    IV

    第一章提到,统计描述成功地应用于确定性混沌,源于它考虑了相空间中复杂的微结构。在相空间的每一有限区域中,都存在指数发散轨道。李雅普诺夫指数的定义包含相邻轨道的比较。引人注目的是,不可逆性已出现在仅包含几个自由度的简单情况之中。它当然是对基于近似之上的不可逆性的拟人解释的一个打击,这些近似是我们自己假定引入的。这一解释在玻尔兹曼失败后得到表述,不幸的是今天仍然被广为传播。

    诚然,若以无穷精度已知初始条件,则仍然存在轨道描述。但是这不对应于任何现实情况。无论何时我们完成实验,通过计算机也好,通过某些其他手段也罢,我们所处理情况的初始条件都只能以有限精度给出,且对混沌系统而言,导致时间对称性破缺。同理,我们也可以设想无穷速度,从而不再需要建立于最大速度(即真空中的光速c)存在之上的相对论。但是,速度大于c的此种假设不对应于任何已知的可观测实在。

    映射是不能抓住时间之真正连续性的理想化模型。我们现在要把注意力转向较为现实的情况,转向对我们来说将具有特殊重要性的不可积庞加莱系统。在那里,个体描述(轨道或波函数)与统计描述之间的破裂更加惊人。对于这些系统,拉普拉斯妖无能为力,不管它对现在的了解是有限的还是无穷的。未来不再是给定的未来,用法国诗人瓦莱里(PaulValery)的说法,它变成了“构造”。