历史

第四章 自然系统理论(2/2)

组和系统群——依据适应特征和共同起源而定。任何任意的复杂系统的进化总是出现在这样的方向上:融合某些特征,分化另外一些特征,并且在序列上发展为部分自主的下层系统。莱文斯总结说,没有必要为复杂系统的综合而假定某种独特的规则:起点可能是“任意的复杂事物”。系统动力学本身以及作用于这些系统的大量进化力(evolutionary,forces)能导致产生结构,融合某些下层系统,再分化出其它下层系统,减少对某些部分的总相互作用,赋予自发行为,组织等级体系,并把离散系统和场进行相互变换”。

    自组织原理可以用公式表示:

    外部压力→内部约束力=适应性自组

    然而,适应性重组系统不一定是一个更隐定的系统:适应性与结构稳定性不是同义的。适应性系统对于引起自组织过程的各种压力是最理想的抵抗者;但它并不因此对其一般环境中的所有因素更有抵抗力。事实上,通常情况恰恰相反:当通过结构复杂化适应性自组织在某种程度上已实现时,系统将变得在热力学上更“不大可能”,并因此导致结构的不稳定和易于解体。其增加了的适应潜能来源于其较强的功能能力,这种功能能力是由较高组织结构的较大自由度赋予的。尽管系统在结构上是不稳定的,但由于用范围较广的自稳定功能平衡它们本质上不稳定的复杂结构,因此,系统进化的方向是适应性越来越强。(见图2’)

    自组织系统中,增加了的组织复杂性可用负熵和用组分建构系统所需的“比特”数这两种方法来测量。每个系统都产生与时间有关的熵。系统中的无序以速率dS/dt增长,这是耗散函数ψ。ψ可以为正、负或零。如果ψ为零,系统处于稳定态;如果ψ为正(ψ>0),系统处于不断瓦解状态;但是如果ψ为负(ψ<0=,系统则处于渐进组织状态,那就是说,它的熵实际上在减少;或者说,它在汇集信息(ψ<0=d(info)/dt>0),这是一回事。熵的正、负或零的改变(dS)是由普里高津方程中dSe和dSi项的相对值决定的:

    dS=dSe+dSi

    这里dSi表示因输入造成的熵变,dSe表示因系统内不可逆过程造成的熵变。尽管dSe总是为正,但dSi可能力正,也可能为负。如果为负,系统“输入负熵”(薛定谔),这样不仅可以抵消其边界内作功导致的瓦解,而且还能使用剩余的自由能组织自己。所以,对于较高的负熵状态来说,自组织过程就没有任何不可思议之处:它是系统的普遍性质,不管它们的质地和起源如何。由于开放系统中熵的减少总被其环境中熵的增加抵消,因此这并没有违反热力学第二定律。在每一个“开放系统-环境”复合体中,熵的净改变为正,

    dS/dt=dSe/dt+dSi/dt>0

    因为在作为整体的复合体之内,

    dSe/dt>dSi/dt

    自组织把系统引向更大的负熵状态;自稳定则把系统保持在先前存在的组织状态(pre-existing state of

    organization)。在一种各种力不断起作用而且它们引起的扰动是处在通过自稳定可以校正的范围内的环境中,系统不仅能够存在,而且能够进化。这类环境中系统的发展可以概念化为类似的,或者,不规则交替的,围绕现存固定力参数的稳定所导致的结果,以及固定力对环境中扰动力产生不断增强的抵抗作用的重组所导致的结果。(图3)

    自组织从根本上改变一个系统的现存结构,并且使它的自我同一性成为问题。一个新系统显露出由一个或几个原有的系统形成、合成(如同一个氦原子由四个通过辐射减去过剩能量的氢原子合成一样),或者,这个新系统似乎开始了一种复制实体的新方式(例如,由突变和自然选择产生一种新的种类)。而且,一个复杂而精细的机制——由此在一个系统中变化被诱发而导致系统的重组——如果孤立地考虑那个系统,经常是难以理解的。因此,在考察自组织系统的过程和机制方面,选择一个更加合适的战略层面变得非常必要,这个层面就是相邻的较高层次的上层系统,换句话说,这个系统是由各系统的共有环境中给定的种类形成的。尽管它的所有组分下层系统改变了性质,这种系统仍可被视为进化,并且它能够在系统-环境联系中显示因果因素——导致一种对环境常量作出响应的重组——从单个系统观点来看,这些因素是被掩盖着的。因此,尽管自稳过程一般能够清楚地在与环境相关的孤立系统中得到理解,但自组过程要求选择相邻较高的上层系统的战略层次来清晰地把握这一概念。这并不是否认通过使用输入的负熵,依靠上述选择性重组过程自组织能够在一个与环境相关的给定系统中产生;它只是说明,与概念的形成来自于自组织单一系统本身的观点相比较,概念的形成来自于大量系统的组织更适合于自组织。(这种战略的具体优点将在紧接着的无机和有机系统的讨论中加以说明。)

    R=f(δ)(整体性质)

    自然系统:系统内和系统间的等级体系

    在构成有序整体的各种系统中——这些系统在它们的环境中既围绕现存稳态适应性地自我稳定,又自我进化到适应性更强、以及一般说来具有更多负熵(或信息)的状态——系统本身将朝着不断增加等级结构的方向发展。

    上述结论是西蒙假设的直接结果。根据西蒙假设,如果存在稳定的中间形态,那么从简单系统向复杂系统的进化要比不存在中间形态快得多。正如他所指出的,由此产生的复杂系统是等级化的。复杂化等级形态要求缩小时间跨度的理由是,组织中的任何破坏不会毁灭整个系统,而仅仅把它分解成稳定的相邻下层系统的集合。因此,复杂化过程又从稳定的等级层次重新开始,并且在一个相对较短的时间里恢复损伤,而不必全部重头开始。所以,根据西蒙的假设,我们搞清楚了自然系统中等级体系之所以具有明显优势是因为等级系统有时间向上进化。对自然系统的自组织适应性质而言,在任何给定时间跨度内其相互适应性将导致一种多层次等级体系,而不是一个非等级结构。定性地说,系统“更容易”合作构成高层次系统而不是单纯地复杂化。因此,这里的简单性就等于效率,它由过程所需的时间来测量。

    如果在持久秩序的良好环境中自然系统不仅维持它们已经取得的组织水平,而且还朝着更高的组织状态断续地或连续地进化,那么在等级组织比非等级组织进化迅速的情况下,同一环境中的各种系统将趋于形成等级性上层系统而不是在它们各自的水平上开始自组过程。这样,一个由这些系统构成的环境本身又变成了一个系统,并具有由其引入固定力的各下层系统,而这些固定力则规定了它的各种参数。自然系统适中的密度使得它们自身在不断变化的扰动中能稳定自己,并且在面临其环境中各种持续不断的力时能组织自己。因此,这些系统使它们自己适应其(范围更广的)环境。如果那个环境中也同样存在组织水平相应的其它系统,那么这些上层系统会相互适应并构成二级秩序系统。诸如此类,会有一系列适应性组织的相互作用存在,这些相互作用只受与其有关的系统的数目、广延性和密度的限制。

    这种自然等级体系概念是共有环境中自稳和自组的有序整体概念的一个必然伴随物。它从相互作用的横向规律中推导出组织的纵向规律。它对自然现象有着广泛的潜在适用性。在对它们进行探究之前应该注意到,由不变的一般性质所限定的各种系统构成的等级体系概念并不意味着还原论,而且实际上它能够很好地解释自然界中各种功能和性质的明显多样性。在等级体系中,一些新“性质”会以不变特性的新的变换形式出现。这种新出现的事物可由以下的思路来解释,每个层次的系统包含了所有较低层次的系统及其在该层次上所形成的整体内的结合。因此,结构和功能多样性的可能性随其层次的增加而增加,并且人们不必把较高层次上各种实体的种种典型特征降低为较低层次上这些实体的特征,不过,人们可以运用适合它们特定等级位置的种种标准。在等级体系中,我们的着眼点越高,可能发现的功能和性质的多样性就越多,而显示这种多样性的现实系统的数目则越少。(参见图2”)所以,原子的数量比分子多,但是只有较少的特征和结构变化;有机体比分子的数目少,但其功能和性质以及显示出的结构形式却不计其数(大约上千万种的植物和动物只是具有生存能力的所有可能物种的一小部分);生态和社会系统的数量比生物要少,但却显示出比生物现象多得多的多样性和灵活性。显然,数量和功能方面的差别在于不同层次上系统的等级关系:一个层次上的许多系统构成了上一层次的一个系统。所以,较高层次上的系统比较低层次的系统要少,但具有更丰富的功能性质。因此,主张所有系统都显示出各种联系和不变性质并不等于还原论:不变性用对应于等级体系各层次自由度的特定非还原变换来表现自己。

    目前,尽管“等级体系”概念广泛应用于当代自然科学和哲学文献,但很少被严格地定义。而当其被严格定义时,它往往不适用于它最经常被应用的那些现象。一个严格的定义是指层次之间的某种控制-被控制或“支配”关系,因此,等级体系图是从一点分叉出去的无回线的有限树。这类等级体系充其量只适用于具有建立非双向控制链的军事或准军事组织。但是,等级体系在自然界中(在这里,严格的单向行为几乎不存在)获得了最富有成效的运用。因此在现今的用法中,“等级体系”的概念将不被赋予严格的意义,但将表示某种“层次-结构”或者某种“层层迭加的模块集合”。它们的构成是这样的:一个层次的组分模块是较低层次的模块。用“系统”这个术语表示“模块”,我们能够把等级体系说成是一种“多重整体”型结构,在这种结构中,某个层次上作为整体发挥功能的系统在较高层次上作为其部分发挥功能。而且任何层次上(最低的或“基础的”除外)某个系统的各部分本身都是较低层次上的整体。

    隶属于任何给定层次之下的某个层次的系统被称作是该给定层次系统的“下层系统”,而相邻较高层次的系统则是它的“上层系统”。这些术语的相对性是明显的:某给定系统a也许是b的下层系统而同时又是c的上层系统。这只需用(c<a)<b来表示就可以了(这里<是一种相对包含的符号=。这就表明b是a的上层系统,而c是a的下层系统。

    如某个给定系统a有组分系统c1,c2,c3,……cn的确定结合,其和用R表示,当其组分同样也是系统且其本身又是某个更大系统的一个组分时,系统a就是某等级体系的一部分:

    [a=(c1,c2,c3,……cn)R]b这里a是b的一个下层系统(组分),并且所有的。都是与上层系统a,有关的可比系统。

    作为结果产生的等级体系是一种“中国套箱”式的等级体系,并且在理论上它的等级是无穷的。然而,无穷等级体系缺乏以经验为根据的解释,因此我们的任务是提出一个有限层次等级体系,并把它的每个层次同可观察到的(或可构想的)自然系统的某一等级联系起来。

    人们经常进行这种尝试,并且直到最近人们仍在本体论范畴框架(这类主要系统之一是德国哲学家N.哈特曼刚提出的)的主题之下进行努力。更近一个时期,一般系统论工作者又继续进行这样的努力。他们希望在经验领域里的各种系统之间找到共同点和不同点。于是博尔丁提供了“系统的等级体系”这一关键概念,而冯·贝塔朗菲又进一步地把系统的等级体系制成了一张层次、理论和模型、以及作经验描述的图表。它既包括自然系统,也包括人造系统(例如,既包括原子、分子和有机体,也包括时钟机构、控制机构和符号系统)。我们所关心的等级体系比它所包括的要少些,仅涉及自然系统,并且在一个基本点上更加严格:它的层次遵循相对套迭的等级体系,既没有空隙,也没有多余。因而,我们寻求把自然现象安排成一种“纵向的”秩序,在这种秩序中除了最低最基本层次及最高最终层次外,任一给定系统相对其组分来说都是一个上层系统,而相对由它和环境中的其它系统共同形成的总体来说又是一个下层系统。此后,从n层次的某个系统看,存在着一种结构一功能构造的系统内等级体系,它由等级有序序列……[(ab)c]n构成;另外,还存在着一种系统间的等级体系,[(nx)y]z……。由于n位于系统内和系统间等级体系交叉处,每个等级中的层次数就确定了n在给定微观等级体系的客观层次结构中的特定位置。

    这种严格包容的(但不一定是严格地被控制的)自然系统等级体系类似于杰勒德的“机体”(“orgs”)等级体系。对于杰勒德来说,“机体”表示“那些物质系统和实体,它们在给定层次上只是一些个体,但它们由下属的单位——较低层次的机体——构成”。如果某个这类的等级体系能够被经验所证实,那么科学的一个基本理想就会实现:由形形色色的经验科学所研究的许多实体将被绘制在一张等级组织图上,而且适用于它们的各种理论也因此能够相互联系。然而,这种证实遇到了严重的困难:对经验已知的各种实体的不同层次的识别经常是成问题的或不清晰的。当我们现在的假设面对经验证据时,那么这些困难将吸引住我们的注意力(第五章)。然而,识别的经验困难不能成为自然等级概念不适用或错误的证据,它只表明从各种经验实体中识别其等级在方法论方面和观察方面还存在问题。基于它作为一种排列秩序的原则能够通过不变的等级关系把经验认为不同的现象联系起来的非凡潜力,等级概念保持着吸引力。