历史

第六章 可检验度(1/2)

    理论是或多或少可以严格地检验的;这就是说,或多或少可以容易地证伪的。它们的可检验性的程度对于理论的选择是有意义的。

    有这一章里,我要通过比较理论的潜在证伪者类来比较它们不同的可检验度或可证伪度。这个考察完全独立于是否有可能在绝对意义上区别可证伪的和不可证伪的理论这一问题。人们的确可以说,这一章通过表明可证伪性是一个程度问题而把可证伪性的要求“相对化”。

    31.纲领和例证

    就如我们在第23节中看到的,假如至少存在一个同型基础陈述的非空类,而这些基础陈述为一个理论所禁止;就是说,假如这理论的潜在证伪者类不是空的,这个理论就是可证伪的。第23节中也说到,假如我们用一圆面积代表所有可能的基础陈述类,用圆的半径代表可能的事情,那么我们可以说,至少有一条半径——也许更确切地说,一条窄的扇形,它的宽度可以代表事件应是“可观察的”这一事实——必须是和这理论不相容的,是为这理论所排除的。因此,人们可以用不同宽度的扇形代表各种理论的潜在证伪者。按照这些理论排除的扇形宽度的大小,可以表明理论具有或多或少的潜在证伪者(暂时不谈这个“或多”“或少”是否可能精确测定的问题)。因此可以进一步说,假如一个理论的潜在证伪者类比另一个理论的潜在证伪者类“大”,那么第一个理论就有更多的机会为经验所反驳;因此,和第二个理论相比较,第一个理论可以说具有“更高的可证伪度”。这也就意味着,第一个理论关于经验世界比第二个理论说得更多,因为它排除的基础陈述类较大。虽然允许的陈述类因而变得更小,这并不影响我们的论证;因为我们已经看到,理论对于这个类并不断言任何东西。因此可以说,一个理论传达的经验信息量,或者它的经验内容,随着它的可证伪度的增加而增加。

    现在我们设想:给我们一个理论,代表这理论禁止的基础陈述的扇形变得越来越宽,最后只留下一条窄的扇形代表着不为这理论所禁止的基础陈述(假如这理论是无矛盾的,就必定会有这样的扇形留下)。像这样的理论显然很容易证伪,因为它只允许经验世界有一个很小范围的可能性;因为它排除了几乎所有可设想的,即逻辑上可能的事件。它对经验世界断言如此之多。它的经验内容如此之大,以至可以说很少有逃脱被证伪的机会。

    确切地说,理论科学的目的就在于获得在上述意义上易于证伪的理论。它的目的在于限制允许的事件到最小的范围,假如能够做到的话,小到这样的程度,任何进一步的限制就会导致这理论的实际的经验的证伪。假如我们能成功地获得这样一个理论,那么这个理论就能描述“我们的特殊世界’精确到理论描述所可能达到的程度;因为它会用理论科学所可能达到的最大的精确性,来从所有在逻辑上可能的经验世界类中挑选出“我们的经验”世界来。所有我们实际遭遇到和观察到的所有事件或偶发事件类,而且只有这些,才称作“被允许的”。

    32.如何比较潜在证伪者类

    潜在证伪者类是无限类。直觉的“较多”和“较少”,不要任何特殊保证条件就可应用于有限类,却不能同样地应用于无限类。

    我们不容易躲开这个困难。即使我们为作比较而考虑被禁止的事件类,而不考虑被禁止的基础陈述或偶发事件,为了弄清其中哪一个含有“更多的”被禁止的事件,也不易躲开上述困难。因为某一经验理论所禁止的事件数也是无限的,这点可以从下列事实中看出:一个被禁止的事件和任何其他事件(不管它是否是被禁止的)的合取又是一个被禁止的事件。

    我将考虑三种方法,即使在无限类的情况下,也给予这直觉的“较多”或“较少”一个精确的意义,以便找出其中哪一种可用来比较被禁止的事件类。

    (1)类的基数(或幂)的概念。这个概念不能帮助我们解决我们的问题,因为很容易看出,潜在证伪者类对所有的理论有着同一的基数。

    (2)维的概念。立方体以某种方式包含比直线更多的点,这个模糊的直观的观念,能够通过集合论的“维”概念以逻辑上无懈可击的术语清楚地表述。这种概念对点的类或集是按照在它们的元素之间的“邻域关系”的丰度加以区别的:更高维的集具有更丰富的领域关系。维的概念,使我们能比较“较高”和“较低”维的类,这里将被用来处理比较可检验度的问题。这是可能的,因为基础陈述通过和其他基础陈述的合取结合起来又产生基础陈述,这个新产生的基础陈述比它们的组成部分“具有更高的复合度”;而基础陈述的这个复合度可以和维的概念联系起来。不过,必须使用被允许的事件的复合而不是被禁止的事件的复合。理由是,一个理论禁止的事件可以有任何复合度;另一方面,某些被允许的陈述之所以被允许,只是因为它们的形式,或者更确切地说,因为它们的复合度太低,以致使它们不能和该理论相矛盾;可以利用这个事实来比较维。

    β)。那么,或者β的所有元素也是α的元素——在这种情况下,我们说这两类具有相同的外延或者说它们是等同的——或者β的有些元素不属于a。在后一种情况下,不属于α的β的元素形成“余类”或称为α对于β的补类,α是β的一个真子类。子类关系和直觉的“较多”和“较少”非常对应,但是,它的不利之处是,这种关系只能用来比较两个互相包含的类。所以,假如两个潜在证伪者类不是互相包含,而是互相交叉,或者它们没有共同的元素,那么,相应的理论的可证伪度就不能用子类关系来比较;它们对于这种关系来说,是不可比的。

    33.用子类关系比较可证伪度

    暂时引进下列定义,以后在讨论理论的维数时将加以改进。

    (1)说陈述x比陈述y“更高度可证伪”或“更可检验”,或用符号表示:Fsb(x)>Fsb(y),当且仅当x的潜在证伪者类包含作为一个真子类的y的潜在证伪者类。

    (2)如果两个陈述x和y的潜在证伪者类同一,则它们有相同的可证伪度,即:Fsb(x)=Fab(y)。

    (3)如果这两个陈述的潜在证伪者类并不作为真子类相互包含,则这两个陈述没有可比的可证伪度(Fsb(x)‖Fsb(y))。

    假如(1)适用,总是有一个非空的补类。在全称陈述的情况下,这个补类必定是无限的。因此,两个(严格全称)理论不可能有这样的区别:其中一个理论禁止为另一个理论所允许的有限数量的单个偶发事件。

    所有重言的和形而上学的陈述的潜在证伪者类都是空的。所以,按照(2),它们是同一的。(因为,空类是所有类的子类,因而也是空类的子类,所以,所有空类是同一的;这一点可以表示为:只存在一个空类。)如果我们用‘e’表示经验陈述,用‘t’或‘m’分别表示重言的或形而上学的陈述(例如,纯粹存在陈述),那么我们可以给重言的或形而上学的陈述一个零可证伪度,我们写作:Fsb(t)=Fsb(m)=0Fsb(e)>0。

    自相矛盾的陈述(可以用(c)来表示),可以说是具有所有在逻辑上可能的基础陈述作为它的潜在证伪者类。这个意思就是说,任何陈述,就其可证伪度而言,都是和自相矛盾陈述可比的。我们得出:Fsb(c)>Fsb(e)>0。如果我们任意地设Fsb(c)=1,即任意地把1赋予某一目相矛盾的陈述的可证伪度,那么我们甚至可以用条件1>Fsb(e)>0来定义经验陈述e。按照这个公式,Fsb(e)总是在0和1之间的间隔内,不包括两端,即在以这两个数字为界的“开放间隔”内。由于把矛盾陈述和重言陈述(形而上学陈述也一样)排除在外,这个公式同时表达了无矛盾性的要求和可证伪性的要求。

    34.子类关系的结构 逻辑概率

    我们已经用子类关系对两个陈述的可证伪度的比较下了定义。因此,可证伪度的比较就具有子类关系的所有结构性质。可比较性问题可以用一个图(图1)来说明。在这个图中,左边画的是某些子类关系,右边画的是相应的可检验性关系。右边的阿拉伯数字对应于左边的罗马数字,某一罗马数字表示相应的阿拉伯数字所表示的那个陈述的潜在证伪者类。在这个图里表示可检验度的箭头,从具有更可检验的或更可证伪的陈述走向不那么可检验的陈述(因此它们相当准确地与可推导性箭头相当:参看第35节)。

    从图中可以看出,各种子类序列可加以区别和追溯,例如,序列Ⅰ-Ⅱ-Ⅳ或Ⅰ-Ⅲ-Ⅴ;并且可以看出,引进新的中间类,可以使得这些序列更加“密集”。所有这些序列在这个特殊情况下都始于1和终于空类,因为空类被包含在每一个类里(在左面的图里,不可能画出空类,只是因为它是每一个类的子类,因此可以说必须出现在每一个地方)。如果我们选择类Ⅰ作为所有可能的基础陈述类,那么Ⅰ就变成矛盾陈述(c),而0(相当于空类)就可以表示重言陈述(t)。从Ⅰ到空类,或者从(c)到(t),可能通过各种途径;从右边的图中可以看出,某些途径可以互相交叉。因此我们可以说,这种关系的结构是一种网络结构(由箭头或子类关系排列成的“序列的网络”)。在节结点(例如,陈述4和5)网络部分地联结起来。只有在普遍类和空类里,对应于矛盾陈述c和重言陈述t;关系才完全联结起来。

    是否可能把各种陈述的可证伪度排列在一个标尺上,即把按照它们的可证伪度排列的数字同各种陈述相关起来?显然,我们不可能用这种方法把所有的陈述排列起来,因为,如果能够的话,我们就会随意地使得那些不可比的陈述成为可比的。但是,我们完全可以从网络中挑选出某个序列,用数字来表示该序列陈述的次序。这样做时,我们必须给离矛盾陈述c较近的陈述的数字,比给离重言陈述t较近的陈述高。由于我们已经分别以0和1赋予重言陈述和矛盾陈述,我们就必须以真分数赋予所挑选的序列中的经验陈述。

    然而,我并不真正想挑选出某一个序列来。赋予这序列中的陈述以数字也是完全任意的。不过,可能给以分数这一事实有很大意义,特别是因为它说明了在可证伪度和概率观念之间的联系。每当我们能比较两个陈述的可证伪度时,我们就能说,可证伪度较小的陈述由于它的逻辑形式,也是概率较大的,这种概率我称为“逻辑概率”。不可把它和在博奕论和统计学中使用的数值概率相混淆。陈述的逻辑概率和它的可证伪度是互补的:它随可证伪度的减少而增加。逻辑概率1相当于可证伪度0,反过来也是如此。具有更可检验度的陈述,即具有更高可证伪度的陈述,是在逻辑上更少可几的陈述;而可检验性较差的陈述是在逻辑上更可几的陈述。

    在第72节中将看到,数值概率能和逻辑概率联结起来,因而也能和可证伪度联结起来。有可能把数值概率解释为适用于(从逻辑概率关系中挑选出来的)子系列的东西,可以在频率估计的基础上为这子系列规定一种测量系统。

    这些对可证伪度比较的考察不仅适用于全称陈述或理论系统;它们也可推广应用于单称陈述。例如,它们适用于和初始条件合取的理论。在这种情况下,潜在证伪者类不可被误认为事件类——同型的基础陈述类——,因为它是偶发事件类(这点和将在第72节中分析的逻辑概率和数值概率之间的联系有某种关系)。

    35.经验内容、衍推和可证伪度

    在第31节中说到,我称之为陈述的经验内容的东西随着它的可证伪度而增加:陈述禁止越多,它对经验世界所说越多(参看第6节)。我称为“经验内容”的东西和比如,Carnap定义的“内容”概念有密切的关系,但不是同一的。对于后者,我使用术语“逻辑内容”,以与经验内容相区别。

    我定义陈述p的经验内容为它的潜在证伪者类(参看第31节)。逻辑内容,借可推导性概念之助,被定义为从该陈述中可推导出的所有非重言陈述类(可以称作它的“后承类”)。所以,p的逻辑内容至少等于(即大于或等于)陈述q的逻辑内容,如q可从p中推导出来(符号表示:如‘p→

    q’)。如果可推导性是相互的(符号‘p←→q’),则说p和q有相同的内容如q可从p中推导出,而p不能从q中推导出,则q的后承类,一定是p的后承类的一个真子集;则p具有更大的后承类,并且从而具有更大的逻辑内容(或者逻辑力)。

    我的经验内容的定义的一个推断是,两个陈述p和q的逻辑内容和经验内容的比较导致相同的结果,假如作比较的陈述不包含形而上学要素的话。因此我们要求:(a)有着相等的逻辑内容的两个陈述也必定具有相等的经验内容;(b)陈述p的逻辑内容大于陈述q的逻辑内容,也必定具有更大的经验内容,或者至少相等的经验内容;最后(c)假如陈述p的经验内容大于陈述q的经验内容,那么它的逻辑内容必定更大,否则就是不可比的。在(b)里必须加上“或者至少相等的经验内容”,这个限制因为p例如可能是q和某个纯粹存在陈述或其他某类形而上学陈述(我们必经赋以一定的逻辑内容)的合取;因为在这种情况下,p的经验内容将不大于q的经验内容。相应的考虑使得在(c)上加上“否则就是不可比的”这条限制成为必要。

    因此,在比较可检验度或经验内容度时,我们通常——就是说,在纯粹经验陈述的情况下——达到和比较逻辑内容或可推导性关系时所达到的相同的结果。因此,可能把可证伪度的比较在很大程度上建立在可推导性关系的基础之上。两种关系都表明网络的形式,这网络在自相矛盾陈述和重言陈述里完全地联结起来(参看第34节)。这一点可以下列说法表示:自相矛盾陈述衍推每一个陈述,而重言陈述为每一个陈述所衍推。而且,我们已经看到,经验陈述可被描述成这样的陈述:它们的可证伪度落在以自相矛盾陈述的可证伪度为一端,以重言陈述的可证伪度为另一端的开放间隔中间。相同地,一般的综合陈述(包括非经验的陈述)也由于衍推关系,被放置在自相矛盾陈述和重言陈述之间的开放间隔中间。

    因此,和所有非经验的(形而上学的)陈述都是“无意义的”实证主义命题相对应的就会是这样的命题:我在经验的陈述和综合的陈述之间,或在经验内容和逻辑内容之间所作的区别是多余的;因为所有综合陈述必须是经验的——即所有都是真正的而不只是伪陈述。但是,我认为,这种使用词的方式,虽然是可行的,并不能把问题澄清,反而把问题混淆了。

    因此,我把对两个陈述的经验内容所作的比较,看作等同于对它们的可证伪度所作的比较。这就使得我们的方法论规则,即应该选择那些能经受最严格的检验的理论(参看第20节中反约定主义的规则),等同于这样的规则:选择具有最大可能的经验内容的理论。

    36.普遍性水平和精确度

    还有其他的方法论要求,可以还原为对最大可能的经验内容的要求。其中两个要求是突出的:对可能达到的最高水平(或程度)的普遍性的要求,和对可能达到的最高精确度的要求。

    考虑到这些要求,我们来考察下列可设想的自然律:

    p:所有在封闭轨道中运行的天体作圆形运动,或者更简洁地说,所有天体轨道是圆。

    q:所有行星轨道是圆。

    r:所有天体轨道是椭圆。

    s:所有行星轨道是椭圆。

    在这四个陈述中存在的可推导性关系在我的图中用箭头表示。从p可以得出所有其他的陈述,从q可以得出s,s也可从r得出;所以s可以从所有其他陈述得出。

    从p移动到q,普遍性程度减少,q表达的比p少,因为行星轨道形成天体轨道的一个真子类。因此,p比q更易于被证伪:如q被证伪,p也被证伪,但是反之不然。从p移动到r,(谓语的)精确度减少:圆是椭圆的其子类;如r被证伪,p也被证伪,但是反之不然。相应的话可以应用到其他的移动上:从p移动到s,普遍性程度和精确度二者都减少;从q到s,精确度减少;而从r到s,普遍性程度减少。和较高程度的普遍性或精确度相对应的是较大的(逻辑的,或)经验的内容,因而有较高的可证伪度。

    全称陈述和单称陈述二者都可以写成“全称条件陈述”的形式(或者经常称作“一般蕴涵”)。假如我们把我们的四个定律写成这个形式,那么我们也许能更容易和更准确地看到两个陈述的普遍性程度和精确度是如何进行比较的。

    全称条件陈述(参看第14节注)可以写成下列形式:‘(x)(φx→fx)’,或者读为:“所有x的值,满足陈述函项φx的,也满足陈述函项fx”。我们的图中的陈述s产生下列例子:“(x)(x是一颗行星的轨道→x是一个椭圆)”的意思是:“不论x是什么,如果x是一颗行星的轨道,则x是一个椭圆”。设p和q是写成这种“标准”形式的两个陈述;那么我们可以说,p比q有着更大的普遍性,如果p的前件陈述函项(可以用‘φpx’来表示)是重言地蕴含于(或可合乎逻辑地推导于),但是不等同于q的相应的陈述函项(可以用‘φqx’来表示);或换言之,如果‘(x)φqx→φpx’是重言的(或逻辑上真的)。同样,我们说,p比q有着更大的精确性,如果‘(x)(fpx→fqx)’是重言的。即如果p的谓词(或者后件陈述函项)比q的谓词更窄,这就意味着:p的谓词衍推q的谓词。

    这个定义可以推广到有着不止一个变量的陈述函项中。基本的逻辑变换从它导致我们已断言过的可推导性关系,这种关系可以用下列规则来表示:如果两个陈述的普遍性和精确性都是可比的,那么,较不普遍或较不精确的陈述可以从较普遍或较精确的陈述中推导出来;当然,除非一个更普遍而另一个更精确(如在我的图中q和r的情况)。

    现在我们可以说,我们的方法论决定——有时被形而上学地解释成因果性原理——应不让任何事情得不到解释,即总是试图从其他具有更高普遍性的陈述中推导出陈述来。这个决定是从可达到的最高普遍性程度和精确度的要求中推导出来的,而这个要求可以还原成这样的要求或规则:应该选择能经受最严格检验的理论。

    37.逻辑域 略论测量理论

    如果陈述p,由于具有更高水平的普遍性或精确性,比陈述q更易于证伪,那么,为p所允许的基础陈述类是为q所允许的基础陈述类的一个真子类。适用于被允许的陈述类之间的子类关系,是适用于被禁止的陈述(潜在证伪者)类之间的子类关系的对立物:这两个关系可以说是相反的(也许可以说是互补的)。为一个陈述所允许的基础陈述类,可以称作它的“域”。一个陈述允许实在有的“域”,可以说是它允许实在“自由活动”的范围(或者自由度)。域和经验内容(参看第35节)是相反(或互补)的概念。因此,两个陈述的域的相互关系和它们的逻辑概率的相互关系一样(参看第34、72节)。

    我引进域概念,因为它帮助我们处理和测量的精确度相联系的某些问题。假定两个理论的推断在所有的应用领域里区别是如此之小